In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment.
نویسندگان
چکیده
Bioactive glass fibers are attractive materials for use as tissue-engineering scaffolds and as the reinforcing phase for resorbable bioactive composites. The bioactivity of S520 glass fibers (52.0 mol % SiO(2), 20.9 Na(2)O, 7.1 K(2)O, 18.0 CaO, and 2.0 P(2)O(5)) was evaluated in two media, simulated body fluid (SBF) and Dulbecco's modified Eagle's medium (DMEM), for up to 20 days at 37 degrees C. Hydroxyapatite formation was observed on S520 fiber surfaces after 5 h in SBF. After a 20-day immersion, a continuous hydroxyapatite layer was present on the surface of samples immersed in SBF as well as on those samples immersed in DMEM [fiber surface area to solution volume ratio (SA:V) of 0.10 cm(2)/mL]. Backscattered electron imaging and EDS analysis revealed that the hydroxyapatite layer formation was more extensive for samples immersed in SBF. Decreasing the SA:V ratio to 0.05 cm(2)/mL decreased the time required to form a continuous hydroxyapatite surface layer. ICP was used to reveal Si, Ca, and P release profiles in DMEM after the 1st h (15.1, 83.8, and 29.7 ppm, respectively) were similar to those concentrations previously determined to stimulate gene expression in osteoblasts in vitro (16.5, 83.3, and 30.4 ppm, respectively). The tensile strength of the 20-microm diameter fibers was 925 +/- 424 MPa. Primary human osteoblast attachment to the fiber surface was studied by using SEM, and mineralization was studied by using alizarin red staining. Osteoblast dorsal ruffles, cell projections, and lamellipodia were observed, and by 7 days, cells had proliferated to form monolayer areas as shown by SEM. At 14 days, nodule formation was observed, and these nodules stained positive for alizarin red, demonstrating Ca deposition and, therefore mineralization.
منابع مشابه
Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملFabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites
IIn this work, cobalt-based alloy/ nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. The scanning electron microscopy images of two- step sintered composites revealed a relatively dense microstructure the density of which decreased with the increase in the NBG amount. M...
متن کاملAn investigation on injectable composites fabricated by 45S5 bioactive glass and gum tragacanth: Rheological properties and in vitro behavior
The injectable composites were formulated from melt-derived 45S5 bioactive glass powder and gum tragacanth. The effect of tragacanth concentration (2 and 4 w/v%) and powder to liquid ratio (P/L= 1.5 to 2.5) on rheological properties, injectability, degradation, swelling, and bioactivity the composites was studied. With the increase of P/L ratio and tragacanth concentration, the force requ...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 67 1 شماره
صفحات -
تاریخ انتشار 2003